Abstract

Weld penetration control has emerged as a critical area of research in the field of online control for ensuring the quality of robotic welds. Acoustic signals, which are known for their distinct temporal characteristics, play a pivotal role in the online assessment of weld quality. This study proposes a novel filter bank specifically tailored for robotic welding and investigates the working environment of robot welding. Twenty-six time-domain and frequency-domain features were extracted from weld acoustic signals, and statistical analyses and comparative methods were used to identify variations in defective signal features and interpret their physical significance. By leveraging these acoustic signal characteristics, this study established a predictive identification model and an online feedback controller. The predictive identification model effectively identified different penetration levels in the welding process, and the identification results served as a reference input for online regulation of the welding speed by the controller. Additionally, a digital twin system was developed, where the identification model and controller functioned as digital objects on a computer and an edge computer, respectively. Experimental tests demonstrated the superior performance of the system and model in accurately reflecting welding process penetration, regulating and stabilising the welding speed, and significantly enhancing the welding quality. The research presented in this paper offers notable advantages for the online control of welding penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.