Abstract

Creeping waves on solid cylinders having slightly subsonic phase velocities and large radiation damping are described as Franz waves because of association with complex poles investigated by Franz. For free-field high frequency broadside backscattering in water, the associated echoes are weak due to radiation damping. It was recently demonstrated, however, that for partially exposed solid metal cylinders at a free surface viewed at grazing incidence, the Franz wave echo can be large relative to the specular echo when the grazing angle is sufficiently small [G. C. Eastland and P. L. Marston, J. Acoust. Soc. Am. 135, 2489–2492 (2014)]. The Fresnel zone associated with the specular echo is occluded making it weak while the Franz wave is partially reflected at the interface behind the cylinder. This hypothesis is also supported by calculating the exact backscattering by half-exposed infinitely long rigid cylinders viewed over a range of grazing angles. Additional experiments concern the high frequency backscattering by cylinders partially buried in sand viewed at small grazing angles. From the time evolution of the associated backscattering by short tone bursts, situations have been identified for which partially reflected Franz wave contributions become significant. Franz waves may contribute to sonar clutter from rocks. [Work supported by ONR.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.