Abstract

An exact study based on the linear theory of elasticity is presented for the steady-state sound radiation characteristics of an arbitrarily thick radially inhomogeneous elastic isotropic hollow sphere, immersed in and filled with ideal compressible fluids, and subjected to an arbitrary axisymmetric time-harmonic driving force at its internal surface. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics by means of the laminated approximation approach. Taylor’s expansion theorem is subsequently employed to solve the modal state equation, ultimately calculating a global transfer matrix. Numerical results are presented for a water-submerged/air-filled steel/zirconia FGM hollow sphere under an axisymmetric distributed internal pressure force. The effects of shell wall thickness, the material compositional gradient, frequency, and subtended polar angle of the internal pressure force on the far-field radiated pressure directivity patterns as well as the total radiated power are examined. It is demonstrated that the material gradient can significantly change the acoustical characteristics of hollow inhomogeneous sphere, especially for thick shells at high excitation frequencies. Limiting cases are considered and good agreements with available results as well as with the computations made by using a finite element package are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.