Abstract
The cochlea is the most important part of the hearing system, due to the fact that it transforms sound guided through air, bone, and lymphatic fluid to vibrations of the cochlear partition which includes the organ of Corti with its sensory cells. These send nerve impulses to the brain leading to hearing perception. The work presents the wave propagation in rigid ducts filled with air or water including viscous-thermal boundary layer damping. In extension, a mechanical box model of the human cochlea represented by a rectangular duct limited by the tapered basilar membrane at one side is developed and evaluated numerically by the finite element method. The results match with rare experiments on human temporal bones without using the physically unfounded assumption of Rayleigh damping. A forecast on the concept of the traveling wave parametric amplification is given to potentially explain the high hearing sensitivity and otoacoustic emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.