Abstract
The acoustic performance of a microperforated panel (MPP) absorber array in the nonlinear regime is investigated both numerically and experimentally. The MPP absorber array is constructed by three parallel-arranged MPP absorbers with different cavity depths. A finite element model is used to simulate the acoustic response of the MPP absorber array by adopting the nonlinear impedance model. The results show that the absorption of the MPP absorber array is affected by the incident sound pressure when it is beyond around 100 dB. With appropriate structural and perforation property of MPP, the MPP absorber array in non-linear regime outperforms that in linear regime due to the improvement of equivalent acoustic impedance matching with ambient air over wide frequency range. However, when the sound pressure excitation is too high, the local resonance effect of the resonating component MPP absorber is diminished and the sound absorption is decreased. With the carefully chosen properties of MPP, the performance degradation induced by panel vibration can be avoided. An optimal set of MPP properties to avoid the performance degradation induced by panel vibration is determined. The measured normal absorption coefficients of a prototype MPP absorber array compare well with the numerical prediction in both linear and nonlinear regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.