Abstract

Acoustic angular momentum is a physical quantity characterizing the rotation of pressure and local particle velocity fields. The acoustic angular momentum was first observed in vortex waves and was found to have many interesting physics including pseudospin based topological effects, spin-momentum locking, and trapping potential for contactless particle manipulations. In this presentation, we will introduce the categorization of acoustic angular momentum into spin and orbital angular momenta. While airborne sound is a longitudinal wave that was long thought to be spinless, we observed the acoustic spin in some special cases. The spin-momentum locking and spin induced torque for particle manipulation were experimentally demonstrated. In addition, the application of acoustic orbital angular momentum in high-speed communication will be discussed. These novel physical acoustic properties have many more applications ranging from underwater exploration to biomedical engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.