Abstract

Methane (CH4) is the second most potent greenhouse gases after carbon dioxide. More than 90% of world rice is cultivated under submerged condition, which facilitates CH4 production in soil. In this pot experiment, different doses of EDTA were applied in rice paddy soils to evaluate their effects on CH4 emission and plant growth during rice cultivation. Application of EDTA at small doses (up to 5.0 ppm) significantly (P < 0.05) suppressed CH4 emission without compromising rice grain yield. Higher doses (10.0 ppm) of EDTA application extended vegetative growth stage of rice plants, which not only reduced ripening percent of rice grains but also increased CH4 emission (even more than control). Therefore, based on this pot experiment data it could be concluded that EDTA application at 5.0 ppm was probably the most rational treatment to mitigate CH4 emission from rice paddy soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.