Abstract

This work deciphers the molecular and genetic bases used by strain PML1(12) of Caballeronia mineralivorans to weather minerals. Through bioinformatics analyses, we identified a total of four GMC-FAD oxidoreductases in the genome of strain PML1(12) and a putative PQQ-dependent glucose dehydrogenase. Through a combination of physiological and geochemical analyses, we revealed that one of them (i.e., GMC3) was the enzyme responsible for the acidification-based mineral weathering mechanism used by strain PML1(12). To date, a single representative of this enzyme family has been identified in the effective mineral-weathering bacterial strain Collimonas pratensis PMB3(1). Phylogenetic analyses revealed that this new system appeared conserved in the Collimonas genus. The new findings presented in this work demonstrate that GMC oxidoreductases can have an active role in other effective MWe bacteria outside of collimonads and that Caballeronia are capable of weathering minerals using this type of enzyme. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, evolutionary biology, and soil sciences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.