Abstract

Chemical precursors for nanomaterials synthesis have become essential to tune particle size, composition, morphology, and unique properties. New inexpensive precursors investigation that precisely controls these characteristics is highly relevant. We studied new Se precursors, the acid selenites (R–O–SeOOH), to synthesize CdSe quantum dots (QDs). They were produced at room temperature by the ▪ reaction with alcohols having different alkyl chains and were characterized by 1H NMR confirming their structures. This unprecedented precursor generates high-quality CdSe nanocrystals with narrow size distribution in the zinc-blend structure showing controlled optical properties. Advanced characterization detailed the CdSe structure showing stacking fault defects and its dependence on the used R–O–SeOOH. The QDs formation was examined using a time-dependent growth kinetics model. Differences in the nanoparticle surface structure influenced the optical properties, and they were correlated to the Se-precursor nature. Small alkyl chain acid selenites generally lead to more controlled QDs morphology, while the bigger alkyl chain leads to slightly upper quantum yields. Acid selenites can potentially replace Se-precursors at competitive costs in the metallic chalcogenide nanoparticles. ▪ is chemically stable, and alcohols are cheap and less toxic than the reactants used today, making acid selenites a more sustainable Se precursor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.