Abstract

With the rapid development of new energy vehicles and energy storage industries, the demand for lithium-ion batteries has surged, and the number of spent LIBs has also increased. Therefore, a new method for lithium selective extraction from spent lithium-ion battery cathode materials is proposed, aiming at more efficient recovery of valuable metals. The acid + oxidant leaching system was proposed for spent ternary positive electrode materials, which can achieve the selective and efficient extraction of lithium. In this study, 0.1 mol L−1 H2SO4 and 0.2 mol L−1 (NH4)2S2O8 were used as leaching acid and oxidant. The leaching efficiencies of Li, Ni, Co, and Mn were 98.7, 30, 3.5, and 0.1%, respectively. The lithium solution was obtained by adjusting the pH of the solution. Thermodynamic and kinetic studies of the lithium leaching process revealed that the apparent activation energy of the lithium leaching process is 46 kJ mol−1 and the rate step is the chemical reaction process. The leaching residue can be used as a ternary precursor to prepare regenerated positive electrode materials by solid-phase sintering. Electrochemical tests of the regenerated material proved that the material has good electrochemical properties. The highest discharge capacity exceeds 150 mAh g−1 at 0.2 C, and the capacity retention rate after 100 cycles exceeds 90%. The proposed new method can extract lithium from the ternary material with high selectivity and high efficiency, reducing its loss in the lengthy process. Lithium replenishment of the delithiation material can also restore its activity and realize the comprehensive utilization of elements such as nickel, cobalt, and manganese. The method combines the lithium recovery process and the material preparation process, simplifying the process and saving costs, thus providing new ideas for future method development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.