Abstract

AbstractThe amylose content in native starch is reduced through hydrolysis, impacting its physicochemical properties. Starch nanoparticles exhibit enhanced water and oil absorption capacities, attributed to increased hydrolysis and subsequently higher solubility. Moreover, the swelling power of starch nanoparticles is notably higher, indicating improved functionality. Pasting properties are altered, with reduced peak viscosity, breakdown viscosity, and setback viscosity in modified starches. Dynamic light scattering reveals a significant reduction in particle size for starch nanoparticles compared to native starch. Morphological analysis using field emission‐scanning electron microscopy (FE‐SEM) highlights distinct granule shapes and surfaces between the two starch types. The X‐ray diffraction patterns confirm an A‐type crystalline structure in both native and modified starches. Fourier transform infrared (FTIR) spectroscopy verifies no significant difference in functional groups due to extraction or hydrolysis methods. This comprehensive investigation provides valuable insights into the chemical modification of pearl millet starch, shedding light on its potential applications in various industries, including food and pharmaceuticals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.