Abstract

The rate of the primary acid modification reaction of 1,4-dihydronicotinamide adenine dinucleotide (NADH) and 1,4-dihydro-3-acetylpyridine adenine dinucleotide (APADH) and their analogues has been studied over a wide pH range (pH 1-7) with a variety of general acid catalysts. The rate depends on [H+] at moderate pH and becomes independent of [H+] at low pH. This behavior is attributed to substrate protonation at the carbonyl group (pK of NADH = 0.6). The reaction is general acid catalyzed; large solvent deuterium isotope effects are observed for the general acid and lyonium ion terms. Most buffers cause a linear rate increase with increasing buffer concentration, but certain buffers cause a hyperbolic rate increase. The nonlinear buffer effects are due to complexation of the buffer with the substrate, rather than to a change in rate-limiting step. The rate-limiting step is a proton transfer from the general acid species to the C5 position of the substrate. Anomerization is not a necessary first step in the case of the primary acid modification reaction of beta-NADH, in which beta to alpha anomerization takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.