Abstract

Extensive investigations were conducted on the structural and photoluminescence characteristics of the present nanosamples, encompassing PL, TEM, PXRD, EDAX, CCT, and CIE research. PXRD studies established a single phase, and TEM instruments were used to examine the dimensions and topographical behavior. The EDAX analysis examined the magnitude of the different components that were present. Decay lifetimes, radiative and non-radiative energy transfer rates, and a number of intensity limitations have all been found using PL spectra. Two significant peaks were visible in the blue (B) and yellow (Y) regions of the photoluminescence (PL) spectra upon NUV excitation, at 486nm and 577nm. At 7mol% Dy3+ ions, the PL intensity peaked. After that, it began to decline as a result of the concentration quenching process brought on by multipolar exchanges (s = 4.1445). The values of 0.86423ms, 81%, and 226s-1 were discovered to be the decay life time, non radiative rates, and quantum efficiency of the ideal powder, respectively. Further analysis of Sr3Y0.93Dy0.07(PO4)3 nanocrystals revealed that their chromaticity coordinates (0.305, 0.321), and CCT value (6902K) matched those of NTSE and commercial LEDs, certifying their use in innovative optoelectronic appliances, particularly single phased WLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.