Abstract

AbstractPure green emitters are essential for realizing an ultrawide color gamut in next‐generation displays. Herein, by fusing the difficult‐to‐access aza‐aromatics onto B (boron)–N (nitrogen) skeleton, a hybridized multi‐resonance and charge transfer (HMCT) molecule AZA‐BN was successfully synthesized through an effective one‐shot multiple cyclization method. AZA‐BN shows pure green fluorescence with photoluminance quantum yield of 99.7 %. The corresponding green device exhibits a maximum external quantum efficiency and power efficiency of 28.2 % and 121.7 lm W−1, respectively, with a full width half maximum (FWHM) of merely 30 nm and Commission Internationale de l'Eclairage (CIE) coordinateyof 0.69, representing the purest green bottom‐emitting organic light‐emitting diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.