Abstract

Pure green emitters are essential for realizing an ultrawide color gamut in next-generation displays. Herein, by fusing the difficult-to-access aza-aromatics onto B (boron)-N (nitrogen) skeleton, a hybridized multi-resonance and charge transfer (HMCT) molecule AZA-BN was successfully synthesized through an effective one-shot multiple cyclization method. AZA-BN shows pure green fluorescence with photoluminance quantum yield of 99.7 %. The corresponding green device exhibits a maximum external quantum efficiency and power efficiency of 28.2 % and 121.7 lm W-1 , respectively, with a full width half maximum (FWHM) of merely 30 nm and Commission Internationale de l'Eclairage (CIE) coordinate y of 0.69, representing the purest green bottom-emitting organic light-emitting diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.