Abstract

SummaryWe show that, in functional data classification problems, perfect asymptotic classification is often possible, making use of the intrinsic very high dimensional nature of functional data. This performance is often achieved by linear methods, which are optimal in important cases. These results point to a marked contrast between classification for functional data and its counterpart in conventional multivariate analysis, where the dimension is kept fixed as the sample size diverges. In the latter setting, linear methods can sometimes be quite inefficient, and there are no prospects for asymptotically perfect classification, except in pathological cases where, for example, a variance vanishes. By way of contrast, in finite samples of functional data, good performance can be achieved by truncated versions of linear methods. Truncation can be implemented by partial least squares or projection onto a finite number of principal components, using, in both cases, cross-validation to determine the truncation point. We establish consistency of the cross-validation procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.