Abstract
Transition-metal dichalcogenide TiS2 stands out as a sustainable candidate for room- and medium-temperature thermoelectric materials due to its affordability, non-toxicity, eco-friendly nature and use of non-critical elements. However, its light element compositional nature results in a large thermal conductivity, which is the main limitation of the thermoelectric performance of TiS2. Here, we report a multi-element doping strategy by incorporating equivalent (Se, Zr) elements and introducing higher-valence (Nb, Ta) and lower-valence (Y, La) elements in pairs to minimize its lattice thermal conductivity, κlat. The findings indicate a nearly 50 % decrease in κlat across the entire temperature range, attributed to the presence of strong point-defect scattering after multi-element doping. Additionally, we observed a reduced dependency of κlat on temperature in multi-element doped TiS2, as point defects can effectively scatter phonons at room temperature. As a result, the multi-element doped TiS2 attained its highest ZT value of approximately 0.4 at 625 K. Incorporating higher-valence and lower-valence elements in pairs proves to be an effective method for decreasing lattice thermal conductivity without compromising too much of its large Seebeck coefficient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have