Abstract

In this work, a low-temperature wafer-level bonding process at 150 °C was carried out on Si wafers containing 10 µm-sized microbumps based on the Cu-Sn-In ternary system. Thermodynamic study shows that addition of In enables low-melting temperature metals to reach liquid phase below In melting point (157 °C) and promotes rapid solidification of the intermetallic layer, which are beneficial for achieving low-temperature bonding. Microstructural observation shows high bonding quality with low amount of defect. SEM and TEM characterization concludes that a single-phase intermetallic formed in the bond and identified as Cu6(Sn,In)5 with a hexagonal lattice. Mechanical tensile test indicates that the bond has a mechanical tensile strength of 30 MPa, which are adequate for 3D heterogeneous integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.