Abstract

The parasitic resistance (Rpara) of Ge p-channel metal–oxide–semiconductor field-effect transistors (p-MOSFETs) fabricated by ion implantation after germanidation (IAG) has been investigated by varying the drive-in annealing temperature. The lowest Rpara of 835 Ω µm was achieved after 450 °C drive-in annealing for 1 min. Boron segregation between NiGe and Ge induced by drive-in annealing has advantages in forming an abrupt metallic source/drain (S/D) junction and contributes to the decrease in Rpara. The appropriate process window for fabricating Ge p-MOSFETs by IAG was also given. IAG, a pathway for introducing a Ge channel into CMOS technology beyond the 10 nm node, was proved to be effective for reducing Rpara.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.