Abstract

Tough issues like sodium (Na) dendrite growth and poor anode reversibility hinder the practical application of sodium metal batteries (SMBs) with moderate liquid electrolytes. To settle these problems, using a smart self-adapting Al2SiO5 ceramic fiber (CF) membrane is demonstrated to enable homogeneous Na depositions and inhibit the dendritic growth. This inorganic membrane itself has superb thermal stability, high ionic mobility (Na+ transference number: 0.65) and electrolyte wettability over traditional glass fiber (GF) or polymeric ones, guaranteeing the low voltage polarization (14 mV) and long-cyclic lifetime (over 600 h) in symmetric cells testing. Notably, aluminous components in CF membranes would interact with F-based molecules in the electrolyte phase, thereby releasing some Al3+ species that can be electrochemically deposited onto the anodic interface. The packed (+)Na3V2(PO4)3|CF|Na(−) full SMBs exhibit far superior cyclic stability (capacity retention over 78.7 % after 600 cycles at 1C) than other counterparts. The in-situ detection/postmortem analysis reveal that Al/F-based inorganics formed in as-built SEI layers play a vital role in Na metal anode protection. This work may provide a viable strategy to overcome the constraints of high-energy SMBs in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call