7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.matlet.2023.134531
Copy DOIJournal: Materials Letters | Publication Date: May 12, 2023 |
Citations: 6 |
The preparation of large-scale bulk materials and the limitation of fatigue strength improvement are two crucial obstacles restricting the industrial applications of ultrafine-grained (UFG) materials. In this study, we successfully fabricated the large-scale UFG pure copper by using the water-cooling assisted friction stir additive manufacturing (FSAM) method and investigated its high cycle fatigue (HCF) properties. The microstructural characteristics before and after fatigue were almost the same, proving the high microstructure stability of FSAM Cu during the HCF deformation. Therefore, the fatigue strength of FSAM Cu was as high as 130 MPa, and the fatigue ratio (0.30) reached the same level as coarse-grained Cu. This study can provide an efficient method to fabricate large-scale bulk materials with high fatigue resistance, bringing possibility to the engineering application of UFG materials.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.