Abstract

A small applied electric field is particularly crucial in the practical application of dielectric ceramic capacitors, since it means a longer lifetime of the capacitors in practical energy storage applications. Based on the traditional ferroelectric BaTiO3, the (1-x)(Ba0.6Na0.2Bi0.2)TiO3-xNaNbO3 medium-entropy material is designed in this paper, which correlates configuration entropy with energy storage performance. The findings demonstrate that the BNBT-0.15NN ceramic synchronously achieves high energy storage density (2.95 J/cm3) and the energy storage efficiency (95.2%) at 180 kV/cm when the configuration entropy rises to 1.43R. The idea of medium-entropy energy storage under low electric field is proposed for the first time, opening up a new avenue for research into the preparation of high energy storage dielectric ceramics via exploring medium-entropy composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call