Abstract
Dynamic provisioning of restorable bandwidth guaranteed paths is a challenge in the design of broad-band transport networks, especially next-generation optical networks. A common approach is called (failure-independent) path protection, whereby for every mission-critical active path to be established, a link (or node) disjoint backup path (BP) is also established. To optimize network resource utilization, shared path protection should be adopted, which often allows a new BP to share the bandwidth allocated to some existing BPs. However, it usually leads the backup paths to use too many links, with zero cost in term of additional backup bandwidth, along its route. It will violate the restoration time guarantee. We propose novel integer linear programming (ILP) formulations by introducing two parameters (/spl epsi/ and μ) in both the sharing with complete information (SCI) scheme and the distributed partial information management (DPIM) scheme. Our results show that the proposed ILP formulations can not only improve the network resource utilization effectively, but also keep the BPs as short as possible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have