Abstract

Flexible electronics capable of acquiring high-precision signals are in great demand for the development of the internet of things and intelligent artificial. However, it is currently a challenge to simultaneously achieve high signal linearity and sensitivity for stretchable resistive sensors over a wide strain range toward advanced application scenarios requiring high signal accuracy, e.g., sophisticated physiological signal discrimination and displacement measurement. Herein, a film strain sensor, which has an electrical and mechanical dual heterostructure, was fabricated via a direct near-field electrowriting and molecule-guided in situ growth of silver nanoparticles with different concentrations on high-modulus polystyrene domains and low-modulus styrene-butadiene copolymers with a salami-like morphology. Mechanism analyses from both theoretical and experimental investigations reveal that the salami-like heteromodulus microstructure regulates microcrack propagation routes, while the heteroconductivity changes the electron transport paths and amplifies the resistance increase during crack propagation. Therefore, the as-designed strain sensor shows a linear resistive response within ca. 70% strain with a gauge factor of 25, unveiling a simple and scalable strategy for trading off signal linearity and sensitivity over a wide strain range for the fabrication of high-performance linear strain sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.