Abstract
In this article, the achievable sum rate and the energy efficiency (EE) are investigated for a multiuser relay-aided massive multiple-input–multiple-output (MIMO) downlink. Low-resolution digital-to-analog converters (DACs) are equipped at both the base station (BS) and the relay station (RS), and the amplify-and-forward protocol is adopted at the RS. Under the Rician fading channel, closed-form approximate expressions for the achievable sum rate are derived with perfect and imperfect channel state information. A more general power law is extracted to save transmit power without reducing the achievable sum rate, and a local optimal power allocation scheme is proposed to improve the channel capacity of active users. Then, the tradeoff between the achievable sum rate and the EE is discussed. The numerical results show that, due to the quantization noise, the transmit power has a limited increase in the achievable rate. In addition, it is more valuable to improve the DAC quantization bit at the RS when the number of BS antennas is larger than that of RS antennas. In addition, under strong line-of-sight channels or high pilot transmit power conditions, the channel estimation accuracy is higher, and the best tradeoff between the achievable sum rate and the EE can be obtained when the DAC quantization bit is 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.