Abstract
Abstract Friend erythroleukemic cells (clone 745), when compared with transformed mouse fibroblasts, hepatoma, myeloma and teratocarcinoma cells, display high levels of acetylcholinesterase and carbonic anhydrase activity. Dimethylsulfoxide, which enhances hemoglobin production in Friend cells, also increases the activity of both enzymes. Inhibitor studies demonstrate that all the cholinesterase activity present in Friend cells is accounted for by the “true” acetylcholinesterase form of the enzyme. Cultured hepatoma cells have low levels of both acetylcholinesterase and pseudocholinesterase. Hybrids between the Friend cells and either transformed mouse fibroblasts or hepatoma cells not only fail to produce any detectable level of hemoglobin or globin mRNA, but also have no carbonic anhydrase activity and only low levels of acetylcholinesterase activity. Dimethylsulfoxide induces an increase in acetylcholinesterase activity in these hybrids. Catalase, which does not increase during erythropoiesis until the reticulocyte stage, is at roughly the same level in Friend cells and the non-erythroid cells we have examined; dimethylsulfoxide has no effect on the level of catalase activity in any of these cells. The data suggest that the Friend cells represent an intermediate stage of erythroid differentiation. It would appear that dimethylsulfoxide treatment stimulates the cells to differentiate further, along a pathway whose events closely follow normal in vivo erythroid differentiation. The data also support the idea that a set of genes usually expressed together in a particular cell type can be coordinatively affected in hybrids between cells maintaining two different epigenetic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.