Abstract

The role of cyclic ADP-ribose (cADPR) as the downstream signal of neuronal muscarinic acetylcholine receptors (mAChRs) and the enzyme responsible for its synthesis, ADP-ribosyl cyclase, were examined in the rat superior cervical ganglion (SCG). Application of acetylcholine or other mAChR agonists increased the ADP-ribosyl cyclase activity by about 250–300% in crude membrane fractions from the SCG of 14-day-old rats. This effect was inhibited by atropine or by the M1-mAChR antagonist, pirenzepine, and was mimicked by GTP. These results indicate that the M1 mAChRs couple to the membrane-bound form of ADP-ribosyl cyclase and suggest that cADPR is a second messenger of M1 mAChR signaling in nervous tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.