Abstract

With advances in chemically induced proximity technologies, heterobifunctional modalities such as proteolysis targeting chimeras (PROTACs) have been successfully advanced to clinics for treating cancer. However, pharmacologic activation of tumor-suppressor proteins for cancer treatment remains a major challenge. Here, we present a novel Acetylation Targeting Chimera (AceTAC) strategy to acetylate the p53 tumor suppressor protein. We discovered and characterized the first p53Y220C AceTAC, MS78, which recruits histone acetyltransferase p300/CBP to acetylate the p53Y220C mutant. MS78 effectively acetylated p53Y220C lysine 382 (K382) in a concentration-, time-, and p300-dependent manner and suppressed proliferation and clonogenicity of cancer cells harboring the p53Y220C mutation with little toxicity in cancer cells with wild-type p53. RNA-seq studies revealed novel p53Y220C-dependent upregulation of TRAIL apoptotic genes and downregulation of DNA damage response pathways upon acetylation induced by MS78. Altogether, the AceTAC strategy could provide a generalizable platform for targeting proteins, such as tumor suppressors, via acetylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call