Abstract
The deleterious effects of glucocorticoids on glucose homeostasis limit their clinical use. There is substantial evidence demonstrating that islet function impaired by long-term glucocorticoids exposure is a core defect in the progression of impaired glucose tolerance to diabetes. The activity of heat-shock protein (Hsp) 90 is required to maintain the hormone-binding activity and stability of glucocorticoid receptor (GR). In the present study, Hsp90 inhibition by 17-DMAG counteracted dexamethasone-mediated inhibition of glucose-stimulated insulin secretion in isolated rat islets as well as expressions of neuropeptide Y (NPY) and somatostatin receptor 3 (SSTR3), two negative regulators of insulin secretion. Like 17-DMAG, both the pan-histone deacetylase (HDAC) inhibitor TSA and HDAC6 inhibitor Tubacin exhibited a similar action in protecting islet function against dexamethasone-induced injury, along with the downregulation of NPY and SSTR3 expressions. The hyperacetylation of Hsp90 by TSA and Tubacin disrupted its binding ability to GR and blocked dexamethasone-elicited nuclear translocation of GR in INS-1 β-cell lines. In addition, Tubacin treatment triggered the GR protein degradation through the ubiquitin-proteasome pathway. These findings suggest that Hsp90 acetylation by inhibiting HDAC6 activity may be a potential strategy to prevent the development of steroid diabetes mellitus via alleviating glucocorticoid-impaired islet function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.