Abstract

We have previously reported reduced glucocorticoid receptor (GR) mRNA levels in the hippocampus and hypothalamic paraventricular nucleus (PVN) during repeated immobilization, which is potentially associated with persistent activation of the hypothalamic-pituitary-adrenocortical axis. We used in situ hybridization and Western blot to examine the transcriptional regulation of the GR gene, GR nuclear translocation, and expression of cytosolic heat shock protein 90 (hsp90), a chaperone protein essential for GR nuclear translocation, in the hippocampus, PVN, and anterior pituitary (AP) during single immobilization (sIMO) and the final immobilization on d 7 after daily IMO for 6 days (rIMO). As with GR mRNA, GR heteronuclear RNA levels decreased in the hippocampus and PVN and increased in the AP during sIMO and rIMO, indicating that the GR mRNA levels in these regions were regulated at the transcriptional level. In both sIMO and rIMO, nuclear GR levels were significantly increased in the hippocampus, medial basal hypothalamus (MBH), and AP. However, GR nuclear translocation was reduced in the hippocampus, unchanged in the MBH, and enhanced in the AP during rIMO, as compared with sIMO. Cytosolic hsp90 expression was unchanged in the hippocampus and MBH, whereas it significantly increased in the AP at 30 min during rIMO but not during sIMO. These results suggest that the site-specific changes in GR nuclear translocation during sIMO vs. rIMO are partially linked to hsp90 responses to immobilization. The reduced nuclear translocation of GR in the hippocampus during rIMO may reflect decreased glucocorticoid-mediated negative feedback on the hypothalamic-pituitary-adrenocortical axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call