Abstract

In mixed Sn-Pb perovskites, the synergistic properties of tin (Sn) and lead (Pb) are leveraged, effectively combining the merits of Pb-based perovskites while simultaneously reducing Pb-associated toxicity. However, the propensity for Sn to undergo facile oxidation from Sn2+ to Sn4+ poses a significant challenge to the stability of these mixed perovskites, limiting their advancement. This study proposes an innovative acetic acid (HAc)-driven synthesis approach to obtain a stable chain-like MAPb0.5Sn0.5Br3 nano-assembly. Leveraging the acidic properties of HAc serves a dual purpose. Primarily, it curtails the oxidation of Sn2+ to Sn4+. Secondly, it orchestrates nanocrystals (NCs) into a more uniform and ordered chain-like assembly, a consequence of hydrogen bonding and coordination interactions facilitated by the HAc. Additionally, HAc demonstrates its capability to passivate MAPb0.5Sn0.5Br3 surface through coordination bonding with unsaturated sites (i.e., Sn2+ or Pb2+), thus effectively compensating for bromide vacancies. Introducing HAc during the synthesis process yields perovskite NCs with enhanced thermal resilience, optical and water stability. Drawing upon the different stimulus responses of synthesized perovskite NCs when exposed to external environment, the optical anti-counterfeiting labels are prepared. The findings provide a potent strategy for augmenting the stability of perovskite NCs, suggesting their potential applicability in anti-counterfeiting endeavors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.