Abstract

Microbial conversion of methane to electricity, fuels, and liquid chemicals has attracted much attention. However, due to the low solubility of methane, it is not considered a suitable substrate for microbial fuel cells (MFCs). In this study, a conductive fiber membrane (CFM) module was constructed as the bioanode of methane-driven MFCs, directly delivering methane. After biofilm formation on the CFM surface, a steady voltage output of 0.6 to 0.7 V was recorded, and the CFM-MFCs obtained a maximum power density of 64 ± 2 mW/m2. Moreover, methane oxidation produced a high concentration of intermediate acetate (up to 7.1 mM). High-throughput 16S rRNA gene sequencing suggests that the microbial community was significantly changed after electricity generation. Methane-related archaea formed a symbiotic consortium with characterized electroactive bacteria and fermentative bacteria, suggesting a combination of three types of microorganisms for methane conversion into acetate and electricity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call