Abstract

Group N streptococci formed acetaldehyde and ethanol from glucose. As the enzymes aldehyde dehydrogenase, phosphotransacetylase and acetate kinase were present this would enable these organisms to reduce acetyl-CoA to acetaldehyde and convert acetyl-CoA to acetyl phosphate and acetate. A pentose phosphate pathway which converted ribose-5-phosphate to glyceraldehyde-3-phosphate was also present. Acetaldehyde could not be formed via the hexose monophosphate shunt or by direct decarboxylation of pyruvate, as the enzymes phosphoketolase and alpha-carboxylase were absent. Phosphoketolase activity was induced in Streptococcus lactis subsp. diacetylactis after growth on D-xylose. Group N streptococci also contained an NAD-dependent alcohol dehydrogenase which reduced acetaldehyde to ethanol while both NAD- and NADP-dependent alcohol dehydrogenase activities were found in Leuconostoc cremoris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call