Abstract

The relationship between quinoprotein alcohol dehydrogenase (ADH) and NAD-dependent ADH was studied by constructing quinoprotein ADH-deficient mutants. Quinoprotein ADH-deficient mutants were successfully constructed from Acetobacter pasteurianus SKU1108 by N-methyl- N′-nitro- N-nitrosoguanidine (NTG) mutagenesis and also by adhA gene disruption with a kanamycin cassette. The NTG mutant exhibited a complete loss of its acetate-producing ability and acetic acid resistance, while the disruptant also exhibited a loss of its acetic acid resistance but retained a weak ADH activity. The immunoblot analysis of quinoprotein ADH indicated that there are no appreciable ADH subunits in the membranes of both mutant strains. The NTG mutant grew better than the wild-type strain in ethanol-containing medium, despite the absence of quinoprotein ADH. In the mutant, the activities of two NAD-dependent ADHs, present in a small amount in the wild-type strain, markedly increased in the cytoplasm when cultured in a medium containing ethanol, concomitant to the increase in the activities of the key enzymes in TCA and glyoxylate cycles. The disruptant showed a poorer growth than the wild-type strain, producing a lower amount of acetic acid in ethanol culture, and it induced one of the two NAD-dependent ADHs and some of the acetate-assimilating enzymes induced in the NTG mutant. This study clearly showed that quinoprotein ADH is extensively involved in acetic acid production, while NAD-dependent ADH only in ethanol assimilation through the TCA and glyoxylate cycles in acetic acid bacteria. The differences between the NTG mutant and the disruptant are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call