Abstract

The unbiased comparison between theory and experiment requires approaches more sophisticated than the basic harmonic-oscillator rigid-rotor model, for taking into account vibrational averaging effects and ro-vibrational couplings in molecules of increasing size. Second-order vibrational perturbation theory based on curvilinear internal coordinates (ICs) offers a remarkable compromise between accuracy and computational cost, thanks to the reduction of mode-mode couplings with respect to their counterparts based on Cartesian coordinates. Therefore, we have developed, implemented, and validated a general engine employing ICs, which allows the accurate evaluation of vibrational averages and ro-vibrational couplings for molecules containing up to about 50 atoms beyond the harmonic approximation. After validation of the new tool for relatively small molecules, the effectiveness of ICs has been demonstrated for some flexible and/or quite large molecular bricks of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.