Abstract
Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q1-frame, where Q1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q1-frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.