Abstract

AbstractDeveloping an intelligent drug delivery/release system, which can transport drugs to the target tissues precisely and release drugs timely, is an important challenge in chemotherapy. A multistage sensitive drug delivery system is designed by inserting a folate (FA) modified lipid and a pH/temperature dual‐sensitive amphiphilic copolymer into a liposome bilayer. The stretchable copolymer plays a role in protection on FA ligand for more accurate targeting. Then, the stretch ability of the copolymer in the liposome bilayer is verified by using the Langmuir–Blodgett film technique. The interaction between the 1,2‐dipalmitoyl‐sn‐glycerol‐3‐phosphocholine (DPPC) monolayer and hybrid liposomes is found to increase, indicating the FA ligand is exposed due to the copolymer shrinking with increasing temperature. Fluorescence polarization measurements demonstrate that the insertion of the copolymer improves the stability of the liposome and offers pH‐controllability for drug release. As a result, the drug leakage of the hybrid liposome is restrained significantly at pH 7.4, while at an acidic pH, the drug release is accelerated. The designed pH/temperature dual‐sensitive copolymer is expected to provide more precise targeting and environmentally controlled drug release to drug delivery systems based on liposomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.