Abstract

The aim of this work is to prepare and evaluate a novel lipid-polymer hybrid liposomal nanoplatform (hyaluronic acid-magnetic nanoparticle-liposomes, HA-MNP-LPs) as a vehicle for targeted delivery and triggered release of an anticancer drug (docetaxel, DTX) in human breast cancer cells. We first synthesize an amphiphilic hyaluronic acid hexadecylamine polymer (HA-C16) to enhance the targeting ability of the hybrid liposome. Next, HA-MNP-LPs are constructed to achieve an average size of 189.93±2.74nm in diameter. In addition, citric acid-coated magnetic nanoparticles (MNPs) are prepared and embedded in the aqueous cores while DTX is encapsulated in the hydrophobic bilayers of the liposomes. Experiments with coumarin 6 loaded hybrid liposomes (C6/HA-MNP-LPs) show that the hybrid liposomes have superior cellular uptake in comparison with the conventional non-targeting liposomes (C6/MNP-LPs), and the result is further confirmed by Prussian blue staining. Under near-infrared laser irradiation (NIR, 808nm), the HA-MNP-LPs aqueous solution can reach 46.7°C in 10min, and the hybrid liposomes released over 20% more drug than the non-irradiated liposomes. Using a combination of photothermal irradiation and chemotherapy, the DTX-loaded hybrid liposomes (DTX/HA-MNP-LPs) significantly enhance therapeutic efficacy, with the IC50 value of 0.69±0.10μg/mL, which is much lower than the values for DTX monotherapy. Consequently, the prepared hybrid nanoplatform may offer a promising drug delivery vehicle with selective targeting and enhanced drug release in treating CD44-overexpressing cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.