Abstract

Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.