Abstract
Pedestrian dead reckoning (PDR), used in state-of-the-art smartphones, calculates pedestrian positions by using built-in inertial sensors. However, the complex and changeable usage modes of smartphones have been obstructing the development of PDR in the field of gait detection. Since the measurement of the sensor is affected by noise, position errors will emerge, needing to be corrected periodically via external measurements. To this end, an optimization-based PDR (OBPDR) method for smartphones is proposed in this study. First, an improved finite state machine (IFSM) gait detection method is designed, which can improve the gait recognition rate and stability compared with the traditional peak detection method. Second, the step detection algorithm proposed in this paper is combined with a heading estimation to obtain the PDR dynamic model. Finally, the measurements of GNSS are fused to the PDR model, based on an adaptive extended Kalman filter (AEKF) algorithm, which can enhance the adaptability of the system to the environment in order to reduce the cumulative errors of PDR. Experiments are carried out to evaluate the performance of the proposed method. The results indicate that compared with the gait detection method, based on peak detection, and the integrated positioning method, based on an extended Kalman filter, the proposed method boasts favorable robustness and a high gait recognition rate, the recognition accuracy being kept between 97.5% and 98.5%; the average position error decreased by more than 67.25%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.