Abstract

We introduce solution dependent finite difference stencils whose coefficients adapt to the current numerical solution by minimizing the truncation error in the least squares sense. The resulting scheme has the resolution capacity of dispersion relation preserving difference stencils in under-resolved domains, together with the high order convergence rate of conventional central difference methods in well resolved regions. Numerical experiments reveal that the new stencils outperform their conventional counterparts on all grid resolutions from very coarse to very fine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call