Abstract

Methodologies reported in the existing literature for identification of a region of interest (ROI) in medical thermograms suffer from over- and under-extraction of the abnormal and/or inflammatory region, thereby causing inaccurate diagnoses of the spread of an abnormality. We overcome this limitation by exploiting the advantages of a logarithmic transformation. Our algorithm extends the conventional region growing segmentation technique with a modified similarity criteria and a stopping rule. In this method, the ROI is generated by taking common information from two independent regions produced by two different versions of a region-growing algorithm that use different parameters. An automatic multi-seed selection procedure prevents missed segmentations in the proposed approach. We validate our technique by experimentation on various thermal images of the inflammation of affected knees and abnormal breasts. The images were obtained from three databases, namely the Knee joint dataset, the DBT-TU-JU dataset, and the DMR-IR dataset. The superiority of the proposed technique is established by comparison to the performance of state-of-the-art competing methodologies. This study performed temperature emitted inflammatory area segmentation on thermal images of knees and breasts. The proposed segmentation method is of potential value in thermal image processing applications that require expediency and automation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.