Abstract
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have