Abstract

Accurate preoperative path planning plays an essential role in a neurosurgical procedure of deep brain stimulation, leading to a successful procedure with significant surgical outcomes. Conventional preoperative path planning is time-consuming and uncertain, depending highly on the knowledge and experience of the clinician who has to manually plan the electrode-implant path. This work presents a new preoperative path planning strategy for neurostimulation to automatically and accurately find the optimal electrode-implant trajectory. Specifically, a coarse-to-refine neural network model is proposed to accurately segment anatomical brain structures such as the subthalamic nucleus, while the path planning is formulated as an optimization task that minimizes the surgical risk on the implantation trajectory through the segmented brain structures, as well as ensures the puncture path at the safest distance to targets of interest in the brain. We evaluate our method on retrospective neurostimulation data and compare it to the puncture path generated by experienced surgeons, with the experimental results showing that our method provides surgeons with automatic and accurate electrode implant trajectory comparable or even better than manual planning of fellow surgeons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.