Abstract

We have developed a protocol for computing the acidity constant (pKa) of organic compounds via ab initio quantum chemistry and continuum solvation methods. Density functional (DFT) calculations employing large basis sets are used to determine the gas-phase deprotonation energies. Solvation effects are treated via a self-consistent reaction field (SCRF) formalism involving accurate numerical solution of the Poisson−Boltzmann equation. Dielectric radii are parametrized for each functional group of interest to optimize solvation free energy calculations for neutral and charged species. While the intrinsic accuracy of these approaches is quite impressive (errors on the order of a few kcal/mol), it is not quite good enough to achieve the target accuracy that we have set for pKa prediction of 0.5 pKa units. Consequently, two further empirical parameters, scaling and additive factors, are determined for every functional group of interest by linear fitting directly to pKa data for a training set. With this additi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.