Abstract

The bond rotational energy landscapes of polylactide (PLA) oligomers were estimated using electron density functional theory (DFT) at the B3LYP/6-31G** level, both in vacuo and with a self-consistent reaction field (SCRF) method to simulate the electronic environment within the condensed phase. The SCRF method was evaluated for application to polymeric systems, and we demonstrate the difficulties involved in applying the method to bulk amorphous polymers with specific attention to the selection of the solvent probe radius. In addition, rotational isomeric states (RIS) calculations were performed, showing the effect of accounting for the bulk phase reaction field on the bond rotational energetics and characteristic ratio. We conclude that present methods of accounting for bulk environments in electronic structure calculations are not well suited for use with polymeric systems, and the development of improved methods is needed in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call