Abstract

In this paper, an accurate numerical method is presented to find the numerical solution of the singular initial value problems. The second-order singular initial value problem under consideration is transferred into a first-order system of initial value problems, and then it can be solved by using the fifth-order Runge Kutta method. The stability and convergence analysis is studied. The effectiveness of the proposed methods is confirmed by solving three model examples, and the obtained approximate solutions are compared with the existing methods in the literature. Thus, the fifth-order Runge-Kutta method is an accurate numerical method for solving the singular initial value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.