Abstract
An interferometric micro-optomechanical accelerometer usually has ultrahigh sensitivity and accuracy. However, cross-axis interference inevitably degrades the performance, including its detection accuracy and output signal contrast. To accurately clarify the influence of cross-axis interference, a modified mechanical-optical theoretical model is established. The rotation of the proof mass and the detected light intensity are quantitatively investigated with a load of cross-axis acceleration. A simulation and experiment are performed to verify the correctness of the theoretical model when the cross-axis acceleration is from 0 to 0.175 g. The results demonstrate that this model has a more than fivefold accuracy increase compared with conventional theoretical models when the cross-axis acceleration is from 0.06 to 0.175 g. In addition, we provide a suppression method to diminish the rotation of the proof mass based on squeeze film air damping, which significantly suppresses the contrast reduction caused by cross-axis interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.