Abstract
High-dimensional hypothesis testing is ubiquitous in the biomedical sciences, and informative covariates may be employed to improve power. The conditional false discovery rate (cFDR) is a widely used approach suited to the setting where the covariate is a set of p-values for the equivalent hypotheses for a second trait. Although related to the Benjamini–Hochberg procedure, it does not permit any easy control of type-1 error rate and existing methods are over-conservative. We propose a newmethod for type-1 error rate control based on identifyingmappings from the unit square to the unit interval defined by the estimated cFDR and splitting observations so that each map is independent of the observations it is used to test. We also propose an adjustment to the existing cFDR estimator which further improves power. We show by simulation that the new method more than doubles potential improvement in power over unconditional analyses compared to existing methods. We demonstrate our method on transcriptome-wide association studies and show that the method can be used in an iterative way, enabling the use of multiple covariates successively. Our methods substantially improve the power and applicability of cFDR analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.