Abstract
Telecommuting and telelearning have gradually become mainstream lifestyles in the post-epidemic era. The extensive interconnection of massive terminals gives attackers more opportunities, which brings more significant challenges to network traffic security analysis. The existing attacks, often using encryption technology and distributed attack methods, increase the number and complexity of attacks. However, the traditional methods need more analysis of encrypted malicious traffic interaction patterns and cannot explore the potential correlations of interaction patterns in a macroscopic and comprehensive manner. Anyway, the changes in interaction patterns caused by attacks also need further study. Therefore, to achieve accurate and effective identification of attacks, it is essential to comprehensively describe the interaction patterns of malicious traffic and portray the relations of interaction patterns with the appearance of attacks. We propose a method for classifying attacks based on the traffic interaction attribute graph, named G-TIAG. At first, the G-TIAG studies interaction patterns of traffic describes the construction rule of the graphs and selects the attributive features of nodes in each graph. Then, it uses a convolutional graph network with a GRU and self-attention to classify benign data and different attacks. Our approach achieved the best classification results, with 89% accuracy and F1-Score, 88% recall, respectively, on publicly available datasets. The improvement is about 7% compared to traditional machine learning classification results and about 6% compared to deep learning classification results, which finally successfully achieved the classification of attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.